If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-16y-15=0
a = 7; b = -16; c = -15;
Δ = b2-4ac
Δ = -162-4·7·(-15)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-26}{2*7}=\frac{-10}{14} =-5/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+26}{2*7}=\frac{42}{14} =3 $
| 4*2x=29 | | X^2+13/2x+15/2=0 | | 5(2x+3)=8x-2 | | 110=t^2+3t+2 | | 0.5x=0.3 | | c+(1-2c)+(c-3)=-4 | | 3x+12=270+12 | | 4n+2=10n | | 0.04=500*r | | 3(x-5)+(x+2)=6x-7 | | 2/x=10/25 | | 8b-4=9(b+7) | | 3y^2=-7y-4 | | -14=6x-(8x-8x3) | | .05(1.15)^x=5 | | -14=6x=8x-8 | | -7-6x=21-2xç | | 3x-5+x=13 | | 3x-5=x13 | | 21=5t+16t^2 | | 4w-5=6+1 | | 180/108=a/3 | | 7x+-26=5(2+-x) | | X/4=8/2x | | 23x-5+21x+5=85 | | 3*5^x=9 | | 5-6n=11+4n | | 6*n=-24 | | n(A)=57 | | N(u)=170 | | 9^(-9y)=11 | | -2÷-7=x |